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Prostate cancer is one of the most commonly occurring malignancies in men, and because existing treatments are
not able to manage this neoplasm adequately, novel approaches are needed. Although tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) has strong antitumor activity via the induction of apoptotic cell
death in awide range of tumor cell types and has negligible toxicity tomost normal cells, some prostate carcinoma
cells are resistant to the apoptotic effects of TRAIL. Therefore, combinatorial approaches with TRAIL and different
chemotherapeutic agents have been developed to overcome the resistance of cancer cells to TRAIL. Here, we inves-
tigated the sensitizing effects of ursolic acid (UA), a pentacyclic triterpenoid found in many plants, on
TRAIL-induced prostate cancer cell apoptosis. We found TRAIL-induced prostate cancer cells apoptosis was signif-
icantly enhanced by UA, and that UA induced CHOP-dependent DR5 up-regulation. This study shows the use of UA
as a sensitizer for TRAIL-induced apoptotic cell death offers a promising means of enhancing the efficacy of
TRAIL-based prostate cancer treatments.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Prostate cancer is the most frequently diagnosed, non-cutaneous
neoplasm and the second leading cause of cancer related mortality in
men [1]. Prostate cancer is unique among human cancers because of
its striking age-dependent incidence and variable penetrance [2]. The
development of prostate cancer in humans is viewed as a multistage
process, involving at onset, a small latent carcinoma of low histological
grade, which later progresses to a largemetastatic lesion [3]. Treatment
options available for this disease are limited because chemotherapy and
radiation therapy are largely ineffective, and becausemetastatic disease
frequently develops even after potentially curative surgery [4–6]. Thus,
novel ways of treating prostate cancer must be developed.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL), a member of the TNF-superfamily, has strong antitumor
activity via apoptotic cell death induction in a wide range of tumor
cell types and negligible toxicity on most normal cells [7,8]. The apo-
ptotic signal induced by TRAIL is triggered by its binding to death re-
ceptors 4 and 5 (DR4 and DR5), which results in receptor aggregation
and the recruitment of Fas-associated protein with death domain
(FADD) and procaspase-8 to form death-inducing signaling complex
(DISC) [9]. Studies have shown that some cancer cells are resistant to
the apoptotic effects of TRAIL [10–12], but combinatorial approaches
based on TRAIL and different chemotherapeutic agents, such as small-
molecule inhibitors, natural compounds, and drugs, have been devel-
oped to overcome the resistance of cancer cells to TRAIL [13–16].
+82 53 943 2762.
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Ursolic acid (UA), a pentacyclic triterpene carboxylic acid, is found in
various plants in the forms of aglycones or glycosides [17]. UA has been
found to have a number of important biological and biochemical func-
tions, such as the inhibitions of tumorigenesis [18], tumor promotion
[19], angiogenesis [20], tumor invasive activity [21], and the induction
of tumor cell differentiation [22]. More recently, several studies have
concluded that UA and its derivatives inhibit cancer cells growth by
causing cell cycle arrest and the stimulating apoptosis [23,24].

Response to TRAIL is highly variable with resistance seen in many
cancer cells. Although it was shown that UA potentiates TRAIL-
induced apoptosis in various cancer cells including PC3 prostate cells
[14], other human prostate cell lines like LNCaP and DU145 were
completely resistant to the cytotoxic effect of TRAIL compared to PC3
cells. Modulation of apoptotic cell death in TRAIL-resistant LNCaP and
DU145 cells by UA offers a promising therapeutic approach for the
treatment of prostate cancer.

In this study,we investigatedwhether UA potentiates TRAIL-induced
prostate cancer cell apoptosis. We demonstrate that combined treat-
ment of TRAIL-resistant LNCaP and DU145 prostate cancer cells with
subtoxic doses of UA and TRAIL were found to induce marked prostate
cancer cell apoptosis. In addition,UA induced C/EBP homologous protein
(CHOP)-dependent DR5 up-regulation, which is known to stimulate the
partial priming of the proteolytic processing of caspase-3.

2. Materials and methods

2.1. Materials

UA, N-acetylcysteine (NAC), reduced glutathione (GSH), PEG-SOD,
PEG-catalase, and propidium iodide (PI) were obtained from Sigma
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Fig. 1. UA sensitized human prostate cancer cells to TRAIL-induced apoptosis. (A) Effect of TRAIL on the viability of human prostate cancer cells. Three different human prostate cancer cell lines were treated with TRAIL for 24 h at the in-
dicated concentrations and viabilities were assessed using an MTT assay. Data are presented as means±S.D. of three separate experiments. (B) Flow cytometric analysis of apoptotic cells. LNCaP and DU145 cells were treated with 50 ng/ml
TRAIL in the absence or presence of UA (20 μM) for 24 h. Levels of apoptosis were quantified using sub-G1 fractions determined by FACS. Cell morphologies were determined by interference microscopy. (C) Fragmentation of genomic DNAs
in LNCaP cells treated for 24 h with UA (20 μM) and TRAIL (50 ng/ml). Fragmented DNA was extracted and analyzed on 1% agarose gels. (D) LNCaP cells were treated with UA (20 μM) plus TRAIL (50 ng/ml) for 24 h in the presence or
absence of Z-VAD-fmk (20 μM) or Z-ITED-fmk (20 μM). Enzymatic activities of caspase 3 were determined by incubating 20 μg of total protein with 200 μM of chromogenic substrate (DEVD-pNA) in 100 μl of assay buffer for 2 h at
37 °C. The release of chromophore p-nitroanilid (pNA) was monitored at 405 nm. Data are presented as means±S.D. of three separate experiments. (E) LNCaP cells were treated with UA (20 μM) plus TRAIL (50 ng/ml) for 24 h in the pres-
ence or absence of Z-VAD-fmk (20 μM). Equal amounts of cell lysates (20 μg) were resolved by SDS-PAGE, transferred to nitrocellulose membranes, and probed with antibodies against PARP, cleaved PARP, procaspase 3, procaspase 8,
cleaved caspase 9, lamin B, Bid, and XIAP. β-Actin was used as the internal control.
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Fig. 2. Inhibitor of apoptosis proteins, c-IAP1, Bcl-xL, and XIAP were not involved in the sensitizing effect of UA on TRAIL-induced apoptosis. Cell extracts were prepared from LNCaP
or DU145 cells treated with the indicated concentrations of UA for 24 h. Western blotting for markers and inhibitors of apoptosis was carried out. β-Actin was used as the internal
control.
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Chemical (St. Louis, MO). 2′,7′-dichlorofluorescein diacetate (DCFH-DA)
and dihydroethidium (DHE) were purchased from Molecular Probes
(Eugene, OR). Antibodies to procaspase-3, Bcl-xL, Bax, Bid, DR4, DR5,
HSP90β and β-actin were obtained from Santa Cruz (Santa Cruz,
CA). Cleaved PARP, procaspase-8, caspase-3, caspase-9, pAkt, Grp78,
CHOP, cIAP-1 and XIAP antibodies were purchased from Cell Signaling
(Beverly, MA). Pan-caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor
(Z-ITED-fmk), soluble recombinant TRAIL andDR5-specific blocking chi-
mera antibody were purchased from R&D Systems (Minneapolis, MN).

2.2. Cell culture

LNCaP, PC3, DU145, A549, MCF7, HCT116, and HeLa cells were
obtained from American Type Culture Collection (Manassas, VA), and
HCT116 p53(−/−) cells were kindly provided by Dr. Bert Vogelstein
(Johns Hopkins University, Baltimore, MD). Cells were cultured as
monolayers at 37 °C in a humidified atmosphere of 95% air and 5%
CO2 using Dulbecco's modified Eagle's medium supplemented with
10% FBS, 2 mM glutamine, and 100 units/ml penicillin/streptomycin.

2.3. Cytotoxicity

Cells (2×104) were grown until 80% confluent in 96-well plates,
and cell viabilities after treatment with various concentrations of UA
for 1–2 days were assessed using an MTT assay. Viabilities were
expressed as percentages of untreated controls.

2.4. Cellular redox status

The productions of intracellular reactive oxygen species (ROS) and
of the superoxide anion were monitored using the oxidant-sensitive
fluorescent probes DCFH-DA and DHE, respectively, by fluorescence-
activated cell sorting (FACS) after incubating cells in PBS for 30 min
at 37 °C with 5 μM DCFH-DA or 5 μM DHE.
2.5. Flow cytometry

Cells were collected at 2000 ×g for 5 min, washed once with cold
PBS, and fixed in 70% ethanol for at least 2 h at−20 °C. After removing
the ethanol by centrifugation, cells were stained with 1 ml of PI
staining solution (50 μg PI, 100 units RNase A, 1.5% Triton X-100) for
at least 1 h in the dark at 4 °C, and analyzed with FACS, Coulter Elite
ESP Cell Sorter (Beckman). Cells with sub-G1 nuclear contents were
considered apoptotic. Values are expressed as percentages of total
cell counts.
2.6. DNA fragmentation assay

To determine whether chromosomal DNA has been degraded into
nucleosome-sized fragments, a 500 μl aliquot of lysis buffer (100 mM
Tris–HCl, pH 8.5, 5 mM EDTA, 0.2 M NaCl, 0.2% SDS, and 0.2 mg/ml
proteinase K) was added to a cell pellet (2×105 cells) and incubated
at 37 °C overnight. DNA was obtained by ethanol precipitation, sepa-
rated in 0.8% agarose gel, and visualized under UV light.
2.7. Western blot analysis

Cell lysates were resolved on a 10–12.5% SDS-PAGE and trans-
ferred to nitrocellulose membranes, which were incubated with pri-
mary antibodies and then with horseradish peroxidase-labeled anti-
rabbit IgG. Immune complexes were detected using an enhanced
chemiluminescence detection kit (Amersham Pharmacia Biotech).
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2.8. Small interfering RNA (siRNA)

The siRNA duplexes used in this study were purchased from
Invitrogen and had the following sequences: DR5, UUU AGC CAC
CUU UAU CUC AUU GUC C; CHOP, AAG ACC CGC GGC GAG GUG AAG;
Control, AAG ACC CGC GCC GAG GUG AAG. Cells were transfected with
20 nM oligonucleotide using Lipofectamine RNAi MAX (Invitrogen) in
serum-free conditions according to the manufacturer's protocol. After
incubation for 24 h, the cells were washed and supplemented with
fresh medium containing 10% FBS.
2.9. Caspase activity assay

Cell were washed three times with chilled PBS and incubated with
75 μl of lysis buffer (50 mM Tris–Cl, pH 7.4, 1 mM EDTA, 10 mM
EGTA, 10 μM digitonin, 0.5 mM PMSF) for 30 min at 37 °C. The con-
tents of three wells were then pooled and centrifuged at 20,000 ×g
for 20 min at 4 °C. The supernatant was mixed (1:1) with reaction
buffer (100 mM HEPES, 1 mM EDTA, 10 mM DTT, 0.5 mM PMSF, 10%
glycerol), and the reaction was initiated by adding 5 μl (5 mg/ml) of
the colorimetric agent Ac-DEVD-pNA (caspase-3 substrate). The mix-
ture was then incubated for 1 h at 37 °C, and caspase activity was
measured by measuring absorbance at 405 nm. Caspase activities
were calculated as (absorbance/mg of protein in a treated sample/
(absorbance/mg of protein in the untreated control sample).
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2.10. Statistical analysis

Differences between two mean values were evaluated using the
Student's t-test, and were considered significant when p values were
b0.05.

3. Results and discussion

3.1. UA sensitized TRAIL-mediated apoptosis

TRAIL is considered a promising tumoricidal drug because it is
known that it induces apoptosis specifically inmalignant or transformed
cells, but is not cytotoxic to normal cultured cells [25]. However, a con-
siderable number of cancer cells are resistant to TRAIL, perhaps due to
the expressional deregulation of antiapoptotic molecules [26,27]. Fur-
thermore, several studies have shown that chemotherapeutic agents
including dietary polyphenols and ionizing radiation can sensitize
TRAIL-induced cytotoxicity [16,28,29], suggesting that TRAIL resistance
in cancer cells can be overcome by effective sensitizers.

In our search of novel strategies to overcome cancer cell resistance,
we investigated the anti-cancer effect of UA on human prostate cancer
cell lines. In contrast to PC3 cells, LNCaP and DU145 cells were resis-
tant to the cytotoxic effect of TRAIL (Fig. 1A). However, co-treatment
with UA and TRAIL affected morphologic changes of LNCaP cells
and DU145 cells. More specifically, apoptotic characteristics, such as,
cell shrinkage, apoptotic bodies, and detachment from plates, were
HCT116
-/- p53 

HeLa

control

UA 30

49 HCT116 MCF7

ere treated with 30 μM UA for 24 h. Expression levels of DR5, DR4, Bid and CHOP were
, PC3, A549, HCT116, HCT116(p53−/−), MCF7, and HeLa cells were treated with 30 μM
n. Data are presented as means±S.D. of three separate experiments.
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observed (Fig. 1B). To confirm the effect of UA on TRAIL-induced apo-
ptosis, we measured apoptosis by FACS analysis of sub-G1 fractions.
The apoptosis rate increased markedly after co-treatment with UA
and TRAIL as compared with either agent alone. Furthermore, DNA
fragmentation analysis by agarose gel electrophoresis showed a typi-
cal ladder pattern of internucleosomal DNA fragmentation in LNCaP
cells co-treated with 20 μM UA and 50 ng/ml TRAIL (Fig. 1C). In
addition, we examinedwhether co-treatment with UA and TRAIL acti-
vated DEVDases, key executioners of apoptosis. It was found that
co-treatment of LNCaP cells with UA and TRAIL strongly stimulated
DEVDase activity (Fig. 1D) and led to a reduction in the protein level
of procaspase-3with concomitant cleavage of PARP, a caspase substrate
(Fig. 1E). The levels of cleaved forms of caspase-8 and -9 also increased
after co-treatment. In addition, we examined the cleavages of apoptotic
regulators, such as, XIAP and Bid and found that co-treatment degraded
both. Furthermore, the pretreatment of LNCaP cells with z-VAD-fmk, a
pancaspase inhibitor, or z-IETD, a caspase-8 inhibitor, significantly
inhibited UA/TRAIL-activated DEVDase activity and the expression of
apoptosis marker proteins (Fig. 1D and E).

3.2. UA upregulated DR5 in different cancer cells

Recent studies using affinity assays and phage displays of
DR-selective TRAIL variants have revealed that DR5 may play a
more prominent role than DR4 in TRAIL-mediated apoptotic signaling
[30,31]. To assess the mechanism underlying this synergistic
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tested in this study (Fig. 3A), which suggests that DR5 up-regulation
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strategy for sensitizing cancer cells to TRAIL-induced apoptosis
[34–36]. DR5 is regulated by either a p53-dependent or a
p53-independent mechanism [37–39]. In the present study, UA in-
duced the expression of DR5 in all cancer cell lines, regardless of
p53 status, that is in; LNCaP and HCT116 (wild-type p53), DU145
cells (mutant p53), and PC3 and HCT116 p53 (−/−) cells (null p53
cells), indicating that UA up-regulates DR5 expression in a
p53-independent manner.

3.3. ROS generation was not involved in UA/TRAIL-mediated apoptosis

ROS generation has been proposed to be involved in DR5
up-regulation by cancer chemopreventive agents, including curcumin
and sulforaphane [34,35]. Hence, we examined whether UA-induced
DR5 up-regulation is dependent on ROS levels in our systems. We
used flow cytometric analysis to quantify ROS levels in UA-treated
cells using DCFHDA. Results revealed that DCF fluorescence was signif-
icantly higher in LNCaP cells treated with 30 μM UA for 6 h than in
untreated cells (Fig. 4A). Furthermore, flow cytometric analysis using
the fluorescent probe DHE, which detects intracellular O2

− production,
showed an increase in O2

− levels after UA treatment (Fig. 4A). Interest-
ingly, however, pretreatmentwith the antioxidant NAC or GSH failed to
inhibit UA-induced DR5 upregulation (Fig. 4B). Furthermore, neither
PEG-catalase nor PEG-SOD blocked UA-induced apoptosis (Fig. 4B).
Taken together, these results suggest that UA-generated ROS is not re-
quired for UA-induced DR5 up-regulation and UA/TRAIL-induced apo-
ptosis. Alternatively, down-regulation of Akt by UA could be another
mechanism of potentiation of TRAIL-induced apoptosis.

3.4. The UA-induced DR5 up-regulation was CHOP-dependent in prostate
cancer cells

It has been suggested that CHOP is a potential transcription factor
for DR5 [36,40,41]. Thus, CHOP protein levels were examined to inves-
tigate further the underlying mechanisms by which UA induces DR5
up-regulation. CHOP has recently been reported to be involved in
DR5 up-regulation mediated by several TRAIL sensitizers, such as
proteasome inhibitor and tunicamycin [41,42]. Our results show that
CHOP protein levels were significantly elevated in prostate cancer cells
treated with UA, and that this increase preceded UA-mediated DR5 in-
duction (Fig. 5A). Furthermore, UA induced CHOP up-regulation dose-
dependently in the LNCaP, DU145, and PC3 cell lines, suggesting that
CHOP up-regulation is a common response of prostate cancer cells to
UA. CHOP siRNA was then transfected to clarify the functional roles of
CHOP in UA-induced DR5 up-regulation. It was found that whereas
DR5 was up-regulated by UA in LNCaP cells transfected with scrambled
siRNA, transfection with CHOP siRNA abrogated the up-regulation of
DR5 (Fig. 5B). In addition, UA/TRAIL-mediated apoptosiswas significant-
ly reduced by CHOP siRNA transfection (Fig. 5C). These results suggest
that CHOP-dependent DR5 up-regulation contributes to the sensitizing
effect of UA on TRAIL-induced apoptosis in human prostate cancer cells.

3.5. The up-regulation of DR5 by UA contributed to the enhancement of
TRAIL-induced apoptosis in LNCaP and in DU145 cells

To confirm the biological significance of DR5 induction by UA in
LNCaP cells, we knocked down DR5 expression using a siRNA duplex
targeting DR5 mRNA and examined the effect of this on TRAIL-
induced apoptosis. As shown in Fig. 6A, transfection of DR5 siRNA,
but not transfection of scrambled siRNA, result in the suppression of
UA inducedDR5 up-regulation. Furthermore, the apoptotic population
and the PARP cleavage induced by UA plus TRAIL were significantly
inhibited in cells transfected with DR5 siRNA as compared with cells
transfected with scrambled siRNA (Fig. 6B and C). To examine the
functional role played by DR5 in the enhancement of TRAIL-induced
apoptosis by UA, we used a recombinant human DR5/Fc chimeric pro-
tein, which has a dominant-negative effect by competing with endog-
enous DR5. As shown in Fig. 6D, the UA mediated enhancement of
TRAIL-induced apoptosis was significantly blocked by DR5/Fc chime-
ric protein. In addition, treatmentwith DR5/Fc chimeric protein signif-
icantly attenuated cleavages of PARP, caspase-3 and caspase-8. Taken
together, these results suggest that UA-induced DR5 is critical for the
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enhancement of TRAIL sensitivity in LNCaP cells. Furthermore, DR5
knockdown by siRNA duplexes or by DR5-specific blocking chimeric
antibody effectively attenuated the cell death induced by UA plus
TRAIL.

4. Conclusions

The present study shows that co-treatment with UA and TRAIL
induces apoptosis in human prostate cancer cells. Although animal
studies are required to support its clinical application, our data provide
mechanistic evidence that UA treatment results in CHOP-mediated DR5
upregulation and renders cancer cells more sensitive to the cytotoxic
activities of TRAIL. Thus, our findings suggest that co-treatment with
UA and TRAIL offers a novel strategy for treating a variety of human
cancers resistant to chemotherapy.
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